Eu3+ Complex-Based Superhydrophobic Fluorescence Sensor for Cr(VI) Detection in Water

Nanomaterials (Basel). 2023 Sep 17;13(18):2574. doi: 10.3390/nano13182574.

Abstract

Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L-1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).

Keywords: electrospinning; fibrous network; hexavalent chromium; inner filter effect; superhydrophobic.