Merging of Azulene and Perylene Diimide for Optical pH Sensors

Molecules. 2023 Sep 19;28(18):6694. doi: 10.3390/molecules28186694.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have emerged as promising materials for organic electronics, including organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Particularly, non-hexagonal ring-fused PAHs are highly desirable due to their unique optoelectronic properties. Herein, a new redox-active azulene-perylene diimide triad 1 and its ring-fused counterpart, diazulenocoronene diimide 2, were synthesized and fully characterized by a combination of NMR, cyclic voltammetry, and UV-visible absorption spectroscopy. Direct comparison of their electronic properties leads us to the conclusion that a significant change in the localization of HOMO and LUMO occurs upon the fusion of azulene and perylene diimide in 2, leading to the lack of intramolecular charge-transfer character for transitions in the visible spectral region. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed to gain further insight into various electronic transitions. Moreover, we found that the adaptive response to acids and bases manifests itself in a reversible two-color change that can be attributed to changes in the chemical structures. Our findings pave the way for manipulating the relative HOMO and LUMO energy levels of organic chromophores by fusing non-alternant azulenes to an otherwise flat PAH, which could possibly lead to applications in organic electronics and optical sensors.

Keywords: azulene; chemical sensors; computational chemistry; cyclic voltammetry; intramolecular charge transfer; optoelectronic properties; perylene diimide; polycyclic aromatic hydrocarbons; ring-fused system.