Corrosion Inhibition in CO2-Saturated Brine by Nd3+ Ions

Molecules. 2023 Sep 13;28(18):6593. doi: 10.3390/molecules28186593.

Abstract

This study reports the use of an inorganic corrosion inhibitor to mitigate dissolved CO2-induced corrosion. Using electrochemical techniques (polarization curves, open circuit potential, polarization resistance, and electrochemical impedance), the effect of adding Nd3+ ions on the corrosion resistance of X52 steel immersed in CO2-saturated brine at 20 °C and 60 °C was evaluated. The polarization curves showed that the Icorr values tend to decrease with increasing Nd3+ ion concentration, up to the optimal inhibition concentration, and that the corrosion potential increases at nobler values. Open circuit potential measurements showed a large increase in potential values immediately after the addition of the Nd3+ ions. Similarly, polarization resistance measurements showed similar trends. It was observed that regardless of temperature, Nd3+ ions can reduce the corrosion rate by more than 97% at doses as low as 0.001 M. Electrochemical impedance measurements confirmed the formation of a protective layer on the steel surface, which caused an increase in the magnitude of the impedance module and phase angle, which indicates an increase in the resistance to charge transfer and capacitive properties of the metallic surface. The characterization of the metallic surface showed that the protective layer was formed by Nd carbonates, whose formation was due to a CO2 capture process.

Keywords: Nd3+ ions; corrosion; corrosion inhibitor; electrochemical measurements; neodymium carbonate.

Grants and funding

This research received no external funding.