Rosen-Type Piezoelectric Transformers Based on 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ceramic and Doped with Sb2O3

Materials (Basel). 2023 Sep 14;16(18):6201. doi: 10.3390/ma16186201.

Abstract

In this study, the characteristics in the lead-free piezoelectric ceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (0.5BZT-0.5BCT) were investigated to assess its potential for Rosen-type piezoelectric transformers. This piezoelectric ceramic has a piezoelectric charge coefficient d33 of 430 pC/N, an electromechanical coupling factor kp of 49%, a dielectric constant εr of 2836, a remnant polarization Pr of 4.98 μC/cm2, and a coercive electric field Ec of 2.41 kV/cm. Sb2O3 was soft doped with 0.05, 0.1, 0.15, and 0.2 mol%, respectively, and exhibited excellent physical properties at 0.1 mol%. Based on this, a piezoelectric transformer was fabricated and measured, and it showed better output characteristics than pure 0.5BZT-0.5BCT. The amplification ratio (Vout/Vin) was optimized based on the device geometry and properties of the piezoelectric material. Moreover, the output characteristics of the Rosen-type piezoelectric transformer were simulated with the PSpice program. Output values of the fabricated and simulated piezoelectric transformers for the r vibrational frequency were compared and analyzed. Accordingly, the step-up amplification ratios Vout/Vin of the fabricated and simulated devices at the vibrational frequency were compared as well. This piezoelectric transformer could replace silicon steel transformers and be used for the creation of black light and for laptop chargers.

Keywords: 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3; Rosen-type; piezoelectric transformers; soft-doped Sb2O3; step-up amplification ratio.