Cytotoxic Activity of Melatonin Alone and in Combination with Doxorubicin and/or Dexamethasone on Diffuse Large B-Cell Lymphoma Cells in In Vitro Conditions

J Pers Med. 2023 Aug 27;13(9):1314. doi: 10.3390/jpm13091314.

Abstract

Melatonin (MLT), a pineal gland hormone, not only regulates circadian and seasonal rhythms, but also plays an important role in many aspects of human physiology and pathophysiology. MLT is of great interest as a natural substance with anti-cancer activities. The aim of this study was to assess the cytotoxicity and apoptosis of MLT, used alone or in combination with one of the most active anti-cancer drugs, doxorubicin (DOX), and a well-known anti-inflammatory drug, dexamethasone (DEX), on a diffuse large B-cell lymphoma (DLBCL)-derived cell line. The cytotoxicity and cell cycle distribution were measured using propidium iodide staining, while apoptosis was assessed using the annexin-V binding method. Additionally, to elucidate the mechanisms of action, caspase-3, -8, and -9 and a decline in the mitochondrial potential were determined using flow cytometry. MLT inhibited cell viability as well as induced apoptosis and cell cycle arrest at the G0/G1 phase. The pro-apoptotic effect was exerted through both the mitochondrial and caspase-dependent pathways. Furthermore, we observed increased cytotoxic and pro-apoptotic activity as well as the modulation of the cell cycle after the combination of MLT with DOX, DEX, or a combination of DOX + DEX, compared with both drugs or MLT used alone. Our findings confirm that MLT is a promising in vitro anti-tumour agent that requires further evaluation when used with other drugs active against DLBCL.

Keywords: apoptosis; cell cycle; dexamethasone; diffuse large B-cell lymphoma; doxorubicin; melatonin.

Grants and funding

This work was supported by a grant from the Medical University of Lodz, Poland (No. 503/1-093-03/503-11-001).