Characteristics of Shisa Family Genes in Zebrafish

Int J Mol Sci. 2023 Sep 14;24(18):14062. doi: 10.3390/ijms241814062.

Abstract

Shisa represents a type of single-transmembrane adaptor protein containing an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Nine shisa subfamily genes have been proposed in most vertebrates; however, some might be species-specific. The number of shisa genes present in zebrafish remains unclear. This study aimed to investigate the evolutionary relationships among shisa family genes in zebrafish (TU strain) using phylogenetic and syntenic analyses. The function of shisa-2 was preliminarily examined via CRISPR/Cas13d-mediated knockdown. Following identification in zebrafish, 10 shisa family genes, namely shisa-1, 2, 3, 4, 5, 6, 7, 8, 9a, and 9b, were classified into three main clades and six subclades. Their encoding proteins contained a cysteine-rich N-terminal domain and a proline-rich C-terminal region containing different motifs. A specific syntenic block containing atp8a2 and shisa-2 was observed to be conserved across all species. Furthermore, all these genes were expressed during embryogenesis. Shisa-2 was expressed in the presomitic mesoderm, somites, and so on. Shisa-2 was identified as a regulator of the expression of the somite formation marker mesp-ab. Overall, our study provides new insights into the evolution of shisa family genes and the control of shisa-2 over the convergent extension cells of somitic precursors in zebrafish.

Keywords: CRISPR/Cas13d; gene expression; knockdown; mesp-ab; shisa-2; somite formation.

MeSH terms

  • Animals
  • Cysteine / metabolism
  • Gene Expression Regulation, Developmental
  • Membrane Proteins / metabolism
  • Phylogeny
  • Proline / metabolism
  • Zebrafish Proteins* / genetics
  • Zebrafish Proteins* / metabolism
  • Zebrafish* / genetics
  • Zebrafish* / metabolism

Substances

  • Zebrafish Proteins
  • Cysteine
  • Membrane Proteins
  • Proline