In Vitro Efficacy of Dalbavancin as a Long-Acting Anti-Biofilm Agent Loaded in Bone Cement

Antibiotics (Basel). 2023 Sep 13;12(9):1445. doi: 10.3390/antibiotics12091445.

Abstract

Based on previous studies by our group in which we demonstrated that dalbavancin loaded in bone cement had good elution capacity for the treatment of biofilm-related periprosthetic infections, we now assess the anti-biofilm activity of dalbavancin and compare it with that of vancomycin over a 3-month period. We designed an in vitro model in which we calculated the percentage reduction in log cfu/mL counts of sonicated steel discs contaminated with staphylococci and further exposed to bone cement discs loaded with 2.5% or 5% vancomycin and dalbavancin at various timepoints (24 h, 48 h, 1 week, 2 weeks, 6 weeks, and 3 months). In addition, we tested the anti-biofilm activity of eluted vancomycin and dalbavancin at each timepoint based on a 96-well plate model in which we assessed the percentage reduction in metabolic activity. We observed a significant decrease in the dalbavancin concentration from 2 weeks of incubation, with sustained anti-biofilm activity up to 3 months. In the case of vancomycin, we observed a significant decrease at 1 week. The concentration gradually increased, leading to significantly lower anti-biofilm activity. The percentage reduction in cfu/mL counts was higher for dalbavancin than for vancomycin at both the 2.5% and the 5% concentrations. The reduction in log cfu/mL counts was higher for S. epidermidis than for S. aureus and was particularly more notable for 5% dalbavancin at 3 months. In addition, the percentage reduction in metabolic activity also decreased at 3 months in 5% dalbavancin and 5% vancomycin, with more notable values recorded for the latter.

Keywords: biofilm; bone cement; dalbavancin; elution; polymethylmethacrylate; vancomycin.