A quantum engine in the BEC-BCS crossover

Nature. 2023 Sep;621(7980):723-727. doi: 10.1038/s41586-023-06469-8. Epub 2023 Sep 27.

Abstract

Heat engines convert thermal energy into mechanical work both in the classical and quantum regimes1. However, quantum theory offers genuine non-classical forms of energy, different from heat, which so far have not been exploited in cyclic engines. Here we experimentally realize a quantum many-body engine fuelled by the energy difference between fermionic and bosonic ensembles of ultracold particles that follows from the Pauli exclusion principle2. We employ a harmonically trapped superfluid gas of 6Li atoms close to a magnetic Feshbach resonance3 that allows us to effectively change the quantum statistics from Bose-Einstein to Fermi-Dirac, by tuning the gas between a Bose-Einstein condensate of bosonic molecules and a unitary Fermi gas (and back) through a magnetic field4-10. The quantum nature of such a Pauli engine is revealed by contrasting it with an engine in the classical thermal regime and with a purely interaction-driven device. We obtain a work output of several 106 vibrational quanta per cycle with an efficiency of up to 25%. Our findings establish quantum statistics as a useful thermodynamic resource for work production.