Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury

Cell Stress Chaperones. 2023 Nov;28(6):675-688. doi: 10.1007/s12192-023-01384-3. Epub 2023 Sep 27.

Abstract

Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.

Keywords: Cardiac microvascular injury; Diabetes; Endothelial cells; Mitochondrial dynamics; Mitophagy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diabetes Mellitus*
  • Endothelial Cells
  • Humans
  • Mitochondrial Dynamics
  • Mitophagy* / physiology
  • Myocardium