Sulfonated Hydrogel Formed via CO2-in-Water Emulsion: Potential in Antibiotic Removal

Gels. 2023 Aug 31;9(9):703. doi: 10.3390/gels9090703.

Abstract

Herein, a green, carbon dioxide-in-water high-internal-phase emulsion (C/W HIPEs) was developed and stabilized with polyvinyl alcohol (PVA) for the formation of chitosan oligosaccharide/poly(acrylamide-co-sodium 4-styrene sulfonate) [COS/P(AM-co-SSS)] monolithic porous hydrogel. The obtained monolith was characterized via FT-IR and SEM. The SEM patterns depicted that the monoliths were interconnected, the void sizes were 78.5 µm, and the interconnected pore throats were 28 μm approximately. Mechanical measurement results indicated that the maximum compress stress of the monolith could reach 334.4 kPa at 90% strain, and it exhibited good mechanical stability. After 200 cycles of compression, it could still recover its original shape without cracking. The obtained COS-based monolith was selected to remove tetracycline (TC) for evaluating the adsorptive features of the interpenetrating pore-containing monolith. The monolithic COS/P(AM-co-SSS) hydrogel behaved with strong antibiotic adsorption capacity (1600.4 mg/g for TC). The adsorption process agreed well with the pseudo-second-order kinetic and Langmuir isothermal models. In addition, the porous monolith had a strong electrostatic force on TC according to the thermodynamic study. This work provides a green route for the development of novel monolithic hydrogels and highlights its potential application in the treatment of antibiotic-containing wastewater.

Keywords: CO2-in-water; chitosan oligosaccharides; high-internal-phase emulsion; hydrogel; monolith; porous.