Active Vision in Binocular Depth Estimation: A Top-Down Perspective

Biomimetics (Basel). 2023 Sep 21;8(5):445. doi: 10.3390/biomimetics8050445.

Abstract

Depth estimation is an ill-posed problem; objects of different shapes or dimensions, even if at different distances, may project to the same image on the retina. Our brain uses several cues for depth estimation, including monocular cues such as motion parallax and binocular cues such as diplopia. However, it remains unclear how the computations required for depth estimation are implemented in biologically plausible ways. State-of-the-art approaches to depth estimation based on deep neural networks implicitly describe the brain as a hierarchical feature detector. Instead, in this paper we propose an alternative approach that casts depth estimation as a problem of active inference. We show that depth can be inferred by inverting a hierarchical generative model that simultaneously predicts the eyes' projections from a 2D belief over an object. Model inversion consists of a series of biologically plausible homogeneous transformations based on Predictive Coding principles. Under the plausible assumption of a nonuniform fovea resolution, depth estimation favors an active vision strategy that fixates the object with the eyes, rendering the depth belief more accurate. This strategy is not realized by first fixating on a target and then estimating the depth; instead, it combines the two processes through action-perception cycles, with a similar mechanism of the saccades during object recognition. The proposed approach requires only local (top-down and bottom-up) message passing, which can be implemented in biologically plausible neural circuits.

Keywords: action-perception cycles; active inference; active vision; depth perception; predictive coding.