Surface modification potentials of cell membrane-based materials for targeted therapies: a chemotherapy-focused review

Nanomedicine (Lond). 2023 Aug;18(19):1281-1303. doi: 10.2217/nnm-2023-0164. Epub 2023 Sep 27.

Abstract

Nanotechnology has significant potential for cancer management at all stages, including prevention, diagnosis and treatment. In therapeutic applications, nanoparticles (NPs) have biological stability, targeting and body-clearance issues. To overcome these difficulties, biomimetic or cell membrane-coating methods using immune cell membranes are advised. Macrophage or neutrophil cell membrane-coated NPs may impede cancer progression in malignant tissue. Immune cell surface proteins and their capacity to maintain activity after membrane extraction and NP coating determine NP functioning. Immune cell surface proteins may offer NPs higher cellular interactions, blood circulation, antigen recognition for targeting, progressive drug release and reduced in vivo toxicity. This article examines nano-based systems with immune cell membranes, their surface modification potential, and their application in cancer treatment.

Keywords: cell membrane; chemotherapy; nanoparticles; surface modification; targeted therapy.

Plain language summary

Nanoparticles (NPs) are small particles that range between 1 and 100 nanometres in size that are used to deliver substances that aid in the prevention, diagnosis and treatment of cancer. NPs are promising for therapeutic use but face challenges like stability, cancer targeting and clearance in the body. This article suggests that these challenges can be overcome using biomimetic methods. This involves coating NPs in cell membranes from immune cells. This has been demonstrated using two types of white blood cells, called macrophages and neutrophils. NPs coated in membranes derived from these cells have been shown to hinder cancer progression. How effective these coated NP cells are depends on what proteins from the surface of the immune cells are included and whether they remain active. These immune cell surface proteins allow coated NPs to have improved interactions with cells, circulate in the blood for longer, target proteins overexpressed on cancer cells and release drugs gradually. Biomimentic cell membrane coating also decreases cell membrane toxicity. The article examines NP-based systems using immune cell membranes, their potential for surface modification and their application in cancer treatment.

Publication types

  • Review

MeSH terms

  • Cell Membrane
  • Humans
  • Membrane Proteins
  • Nanoparticles*
  • Neoplasms* / drug therapy

Substances

  • Membrane Proteins