STED-Inspired Cationic Photoinhibition Lithography

J Phys Chem C Nanomater Interfaces. 2023 Sep 7;127(37):18736-18744. doi: 10.1021/acs.jpcc.3c04394. eCollection 2023 Sep 21.

Abstract

Direct laser writing by two-photon lithography has been enhanced substantially during the past two decades by techniques borrowed from stimulated emission depletion (STED) microscopy. However, STED-inspired lithography was so far limited to radical polymerizations, mostly to acrylates and methacrylates. Cationic polymers did not derive benefits from this technique. Specifically, epoxide polymerization, which plays a paramount role in semiconductor clean-room technology, has not yet been reported with a second, depleting laser focus in the outer rim of the point spread function. We now found that using a thioxanthone as a sensitizer and sulfonium or iodonium salts as photoinitiators enables at least partial optical on/off switching of two-photon polymerization and, in the case of the sulfonium salt, allows for writing epoxy lines with widths shrunk by approx. two-thirds compared to lines written with two-photon polymerization alone.