A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans

Dev Cell. 2023 Oct 9;58(19):1847-1863.e12. doi: 10.1016/j.devcel.2023.08.031. Epub 2023 Sep 25.

Abstract

An actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo. Surprisingly, spectrin transport is bimodal, comprising fast runs and movements that are 100-fold slower than previously reported. Modeling and genetic analysis suggest that the two rates are independent, yet both require kinesin-1 and the coiled-coil proteins UNC-76/FEZ1 and UNC-69/SCOC, which we identify as spectrin-kinesin adaptors. Knockdown of either protein led to disrupted spectrin motility and reduced distal MPS, and UNC-76 overexpression instructed excessive transport of spectrin. Artificially linking spectrin to kinesin-1 drove robust motility but inefficient MPS assembly, whereas impairing MPS assembly led to excessive spectrin transport, suggesting a balance between transport and assembly. These results provide insight into slow axonal transport and MPS integrity.

Keywords: FEZ1; SCOC; UNC-69; UNC-76; axon; kinesin; slow axonal transport; spectrin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Axonal Transport
  • Axons / metabolism
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Caenorhabditis elegans* / metabolism
  • Kinesins / metabolism
  • Spectrin* / metabolism

Substances

  • Caenorhabditis elegans Proteins
  • Kinesins
  • Spectrin