An extracellular glucose sensor for substrate-dependent secretion and display of cellulose-degrading enzymes

Biotechnol Bioeng. 2024 Jan;121(1):403-408. doi: 10.1002/bit.28549. Epub 2023 Sep 25.

Abstract

The efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second-generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G-protein-coupled receptor (GPCR)-based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose-dependent signal amplification. We focused on the glucose-responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3 , increasing extracellular enzyme activity by 81%. We then demonstrated glucose-mediated expression and cell-surface display of the β-glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re-directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock-out of PAH1. This resulted in an up to 4.2-fold improvement with respect to the baseline strain. Finally, we observed cellobiose-dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1-fold when cellobiose was added.

Keywords: HXT1 promoter; PAH1; Saccharomyces cerevisiae; cellulase secretion; glucose sensing; surface display.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cellobiose / metabolism
  • Cellulose* / metabolism
  • Fermentation
  • Glucose / metabolism
  • Phosphatidate Phosphatase / metabolism
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / metabolism
  • beta-Glucosidase

Substances

  • Cellulose
  • Cellobiose
  • beta-Glucosidase
  • Glucose
  • PAH1 protein, S cerevisiae
  • Phosphatidate Phosphatase
  • Saccharomyces cerevisiae Proteins