Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation

IEEE Trans Nanobioscience. 2024 Apr;23(2):262-271. doi: 10.1109/TNB.2023.3319084. Epub 2024 Mar 28.

Abstract

The main objective of the present study is to use graphene as electrode neural interface material to design novel microelectrodes topology for retinal prosthesis and investigate device operation safety based on the computational framework. The study's first part establishes the electrode material selection based on electrochemical impedance and the equivalent circuit model. The second part of the study is modeling at the microelectrode-tissue level to investigate the potential distribution, generated resistive heat dissipation, and thermally induced stress in the tissue due to electrical stimulation. The formulation of Joule heating and thermal expansion between microelectrode-tissue-interface employing finite element method modeling is based on the three coupled equations, specifically Ohm's law, Navier's equation, and Fourier equation. Electrochemical simulation results of electrode material reveal that single-layer and few-layer graphene-based microelectrode has a specific impedance in the range of 0.02- [Formula: see text], comparable to platinum counterparts. The microelectrode of [Formula: see text] size can stimulate retinal tissue with a threshold current in the range of 8.7- [Formula: see text]. Such stimulation with the observed microelectrode size indicates that both microelectrodes and retinal tissue stay structurally intact, and the device is thermally and mechanically stable, functioning within the safety limit. The results reveal the viability of high-density graphene-based microelectrodes for improved interface as stimulating electrodes to acquire higher visual acuity. Furthermore, the novel microelectrodes design configuration in the honeycomb pattern gives the retinal tissue non-invasive heating and minimal stress upon electrical stimulation. Thus, it paves the path to designing a graphene-based microelectrode array for retinal prosthesis for further in vitro or in vivo studies.

MeSH terms

  • Computer Simulation
  • Electric Impedance
  • Electric Stimulation
  • Graphite*
  • Microelectrodes
  • Retina / surgery
  • Visual Prosthesis*

Substances

  • Graphite