Low-Cost Preparation of High-Performance Na-B-H-S Electrolyte for All-Solid-State Sodium-Ion Batteries

Adv Sci (Weinh). 2023 Nov;10(32):e2302618. doi: 10.1002/advs.202302618. Epub 2023 Sep 25.

Abstract

All-solid-state sodium-ion batteries have the potential to improve safety and mitigate the cost bottlenecks of the current lithium-ion battery system if a high-performance electrolyte with cost advantages can be easily synthesized. In this study, a one-step dehydrogenation-assisted strategy to synthesize the novel thio-borohydride (Na-B-H-S) electrolyte is proposed, in which both raw material cost and preparation temperature are significantly reduced. By using sodium borohydride (NaBH4 ) instead of B as a starting material, B atoms can be readily released from NaBH4 with much less energy and thus became more available to generate thio-borohydride. The synthesized Na-B-H-S (NaBH4 /Na-B-S) electrolyte exhibits excellent compatibility with current cathode materials, including FeF3 (1.0-4.5 V), Na3 V2 (PO4 )3 (2.0-4.0 V), and S (1.2-2.8 V). This novel Na-B-H-S electrolyte will take a place in mainstream electrolytes because of its advantages in preparation, cost, and compatibility with various cathode materials.

Keywords: all-solid-state batteries; low-cost; solid electrolytes; superionic conductors; thioborate.