IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice

Int J Neurosci. 2023 Sep 25:1-11. doi: 10.1080/00207454.2023.2262741. Online ahead of print.

Abstract

Aim: Postoperative cognitive dysfunction (POCD) is a common postoperative complication, especially in elderly patients. It extends hospital stay, increases the mortality rate and are heavy burdens to the family and society. Accumulating research has indicated that overactivation of pyrin domain-containing protein 3 (NLRP3) inflammasomes is related to POCD andplays a critical role in activating pro-inflammatory cytokines. According to existing studies, indoleamine 2,3-dioxygenase (IDO) is potently up-regulated by inflammatory factors, tryptophan in brain is mainly catalyzed by IDO to kynurenine (KYN), KYN metabolism may contribute to the development of depressive disorder and memory deficits. Hence, this study elucidated whether IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice.

Material and methods: POCD model was established in aged C57BL/6J mice by exploratory laparotomy under isoflurane anesthesia. Learning and memory were determined using Morris water maze.

Results: The data showed that IDO and kynurenine aminotransferase-II (KAT-II) mRNA in hippocampus was up-regulated, and NLRP3, caspase recruitment domain (ASC), interleukin-1b (IL-1b) and IDO overexpressed, KYN levels increased after anesthesia and surgery. NLRP3 inflammasome inhibitor (MCC950) reversed NLRP3, ASC, IL-1b and IDO overexpression, and the elevation of KYN levels. To clarify the role of IDO-Kynurenine pathway in postoperative cognitive impairment, IDO inhibitor (1-methyl-Ltryptophan 1-MT) reduced the elevation of KYN and kynurenic acid (KYNA) levels, reduction of tryptophan (TRP), as well as improved learning and memory abilities. Finally, KAT-II inhibitor (PF-04859989) reduced brain KYNA levels and restored the cognitive impairment.

Conclusion: These results reveal that IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment.

Keywords: IDO; KYNA; Postoperative cognitive deficit.