Inductive sensing of magnetic microrobots under actuation by rotating magnetic fields

PNAS Nexus. 2023 Sep 12;2(9):pgad297. doi: 10.1093/pnasnexus/pgad297. eCollection 2023 Sep.

Abstract

The engineering space for magnetically manipulated biomedical microrobots is rapidly expanding. This includes synthetic, bioinspired, and biohybrid designs, some of which may eventually assume clinical roles aiding drug delivery or performing other therapeutic functions. Actuating these microrobots with rotating magnetic fields (RMFs) and the magnetic torques they exert offers the advantages of efficient mechanical energy transfer and scalable instrumentation. Nevertheless, closed-loop control still requires a complementary noninvasive imaging modality to reveal position and trajectory, such as ultrasound or X-rays, increasing complexity and posing a barrier to use. Here, we investigate the possibility of combining actuation and sensing via inductive detection of model microrobots under field magnitudes ranging from 100 s of microtesla to 10 s of millitesla rotating at 1 to 100 Hz. A prototype apparatus accomplishes this using adjustment mechanisms for both phase and amplitude to finely balance sense and compensation coils, suppressing the background signal of the driving RMF by 90 dB. Rather than relying on frequency decomposition to analyze signals, we show that, for rotational actuation, phase decomposition is more appropriate. We demonstrate inductive detection of a micromagnet placed in two distinct viscous environments using RMFs with fixed and time-varying frequencies. Finally, we show how magnetostatic selection fields can spatially isolate inductive signals from a micromagnet actuated by an RMF, with the resolution set by the relative magnitude of the selection field and the RMF. The concepts developed here lay a foundation for future closed-loop control schemes for magnetic microrobots based on simultaneous inductive sensing and actuation.

Keywords: inductive detection; magnetic control; magnetic particle imaging; microrobots; rotational magnetic spectroscopy.