miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation

Mol Ther Nucleic Acids. 2023 Sep 9:34:102025. doi: 10.1016/j.omtn.2023.09.002. eCollection 2023 Dec 12.

Abstract

Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal β-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating β-hemoglobinopathies.

Keywords: BCL11A; Non-coding RNAs; SOX6; gene expression; miR-365-3p; β-hemoglobinopathies; γ-globin; ε-globin.