Response behavior of antibiotic resistance genes and human pathogens to slope gradient and position: An environmental risk analysis in sloping cultivated land

Sci Total Environ. 2023 Dec 20:905:166994. doi: 10.1016/j.scitotenv.2023.166994. Epub 2023 Sep 22.

Abstract

Soils, especially in farmlands, are key media for the transmission of antibiotic resistance genes (ARGs) and their hosts from the environment to humans. Sloping farmland is an important agricultural resource, but there lack of studies on the fate and risk of ARGs in sloping land. Also, the behavior and drivers of ARGs in response to slope gradient and position are unclear. Here, metagenomics was used to investigate the profiles of ARGs, mobile genetic elements, and microbial communities in soils from lands of five slope gradients (5°, 10°, 15°, 20°, and 25°) with two slope positions (uphill and downhill). Results showed that while the abundance (except 15°) and diversity (except 20°) of ARGs increased as the slope gradient increased, the diversity of ARGs with health risk, especially the high-risk ones, decreased. For slope positions, abundant and diverse ARGs were more likely to accumulate at downhill. Furthermore, 52 bacterial genera and 12 human pathogenic bacteria (HPB) species were identified as the potential hosts for ARGs with high risk, and abundant HPB species were also detected in the soils with low gradients at downhill. Moreover, the structural equation model analysis revealed that the slope gradient and the slope position have both direct and indirect effects on the abundance of ARGs. Further correlation analysis revealed that the slope gradient has a positive effect (p < 0.05) on nitrite nitrogen in the soils. Also, the slope position has a negative effect (p < 0.05) on total phosphorus and microbial nitrogen, while positively affected (p < 0.05) on particulate nitrogen and microbial carbon, which were the key factors driving the behavior of ARGs. Overall, this study provided comprehensive information on ARGs with health risks and their potential pathogenic hosts in sloping farmland. It can be important for controlling antibiotic resistance transmission and be consistent with the One Health framework.

Keywords: Gentle slope farmland; Human pathogenic bacteria; Metagenomic analysis; Soil resistome.

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Bacteria / genetics
  • Drug Resistance, Microbial / genetics
  • Genes, Bacterial*
  • Humans
  • Nitrogen
  • Risk Assessment
  • Soil / chemistry
  • Soil Microbiology

Substances

  • Anti-Bacterial Agents
  • Soil
  • Nitrogen