Strong Rashba parameter of two-dimensional electron gas at CaZrO3/SrTiO3 heterointerface

Sci Rep. 2023 Sep 23;13(1):15927. doi: 10.1038/s41598-023-43247-y.

Abstract

We synthesized a CaZrO3/SrTiO3 oxide heterostructure, which can serve as an alternative to LaAlO3/SrTiO3, and confirmed the generation of 2-dimensional electron gas (2-DEG) at the heterointerface. We analyzed the electrical-transport properties of the 2-DEG to elucidate its intrinsic characteristics. Based on the magnetic field dependence of resistance at 2 K, which exhibited Weak Anti-localization (WAL) behaviors, the fitted Rashba parameter values were found to be about 12-15 × 10-12 eV*m. These values are stronger than the previous reported Rashba parameters obtained from the 2-DEGs in other heterostructure systems and several layered 2D materials. The observed strong spin-orbit coupling (SOC) is attributed to the strong internal electric field generated by the lattice mismatch between the CaZrO3 layer and SrTiO3 substrate. This pioneering strong SOC of the 2-DEG at the CaZrO3/SrTiO3 heterointerface may play a pivotal role in the developing future metal oxide-based quantum nanoelectronics devices.