Sulfur defect induced Cd0.3Zn0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO2 reduction to prepare proportionally adjustable syngas

J Colloid Interface Sci. 2024 Jan;653(Pt A):687-696. doi: 10.1016/j.jcis.2023.09.103. Epub 2023 Sep 18.

Abstract

The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.

Keywords: CO(2) reduction; Gas solid interfacial catalysis; Interfacial chemical bonds; Photothermal catalysis; S-vacancy.