Impacts of dietary betaine on rectal temperature, laying performance, metabolism, intestinal morphology, and follicular development in heat-exposed laying hens

J Therm Biol. 2023 Oct:117:103714. doi: 10.1016/j.jtherbio.2023.103714. Epub 2023 Sep 14.

Abstract

This experiment assessed the influences of betaine (BET; 2000 mg/kg) on rectal temperature (Tr), laying performance, metabolism, intestinal morphology, and follicular development in heat-stressed hens. One-hundred and twenty-eight Hisex white hens (42wks) were housed in 4 battery cages (8 pens/cage; 4 hens/pen) and divided into 4 treatments: 1) thermoneutral (TN) environments and a control diet (TNCON), 2) TN and a diet accompanied with BET (TNBET), 3) heat stress (HS) environments and a control diet (HSCON), or 4) HS and a diet accompanied with BET (HSBET). Following acclimation (15d), hens of TNCON and TNBET remained in TN, while HSCON and HSBET hens were subjected to cyclical HS (5d; 16.9-37.5 °C). Cyclical HS increased Tr compared with TN hens (1.6 °C; P < 0.01), but supplemental BET decreased Tr (0.4 °C; P < 0.01). Relative to TN treatments, HS declined egg production, weight, and mass (18, 4.2, and 26%, respectively; P < 0.01), but BET ameliorated the egg production and mass (13.1 and 16.2%, respectively; P < 0.01). Compared with HSCON, feed conversion ratio and survival rate were improved in HSBET hens (12.3 and 6.25%, respectively; P ≥ 0.03). Relative to TN hens, HS elevated glucose and blood urea nitrogen (BUN) levels (15 and 4%, respectively; P ≤ 0.04). Supplemental BET decreased BUN levels (6.6%; P < 0.01) relative to HSCON hens. Furthermore, HS diminished jejunal villus height and villus surface area (∼27 and 35%, respectively; P < 0.01) relative to TN hens but were unaltered by BET supplementation. Relative to TN hens, HS decreased oviduct's weight, ovary's length, and ovarian primordial and primary follicles count (18, 23, 34 and 44%, respectively; P < 0.01) and caused fibrosis in shell gland (3-fold; P = 0.05). Collectively, HS impaired productivity, metabolism, intestinal architecture, and reproductive efficiency. Feeding BET reduced Tr, improved laying performance, and slightly altered metabolism but did not affect intestinal and follicular measurements in heat-stressed hens.

Keywords: Betaine; Follicular development; Heat stress; Intestinal morphology; Laying hens; Metabolism.