Investigating the impact of diameters and thread designs on the Biomechanics of short implants placed in D4 bone: a 3D finite element analysis

BMC Oral Health. 2023 Sep 22;23(1):686. doi: 10.1186/s12903-023-03370-8.

Abstract

Background: Dental implants emerge as a dependable and efficacious alternative for patients experiencing partial or complete tooth loss. The stability of these implants is influenced by surface topography and macro-level design. In cases where the height of the maxillary posterior region is diminished, employing short implants can prove advantageous. With the aim of examining the distribution of von Mises stress, strain, and micromovement in D4 bone quality surrounding platform-switched short implants, measuring 6 mm in length and featuring diameters ranging from 4 to 6 mm, as well as different thread designs, an in-depth finite element analysis was conducted under immediate loading conditions.

Methodology: A 3D finite element model was constructed to simulate maxillary molar crowns, incorporating an implant with a length of 6 mm and varying diameters and thread designs. The diameters utilized were 4/3.6 mm, 5/4 mm, and 6/4.8 mm, while the thread designs included buttress, square, and triangle patterns. Each model underwent analysis with a 100 N force applied in two directions: vertical and oblique, relative to the long axis of the implant. Stress, strain, and micromovement in the peri-implant region were recorded, employing the Ansys Workbench R v.18.1 software for modelling and analysis.

Results: When comparing all three diameters, the wide diameter (6 mm threads) exhibited the lowest values of peri-implant von Mises stresses (3.3 MPa and 35.1 MPa), strains (194 Ɛ and 484 Ɛ), and micromovements (0.7 μm and 1.3 Ɛ) subjected to axial and non-axial loading of a 100 N force. Notably, square microthreads yielded the most favorable stress parameters among the different thread shapes, manifesting the minimum values of stress, strains, and micromovements in their vicinity.

Conclusion: For the treatment of atrophic ridges or in scenarios necessitating extensive surgical preparation of the implant site, a combination of short implants, wide diameters, and platform switching can be employed. In situations with reduced bone height and the requirement for an implant-supported prosthesis to replace a missing permanent maxillary molar, the utilization of wide-diameter platform-switched short implants measuring 6 mm in length, featuring a square thread design, should be taken into consideration.

Keywords: Bone quality; Immediate loading; Platform switched; Short implant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atrophy
  • Biomechanical Phenomena
  • Dental Implants*
  • Finite Element Analysis
  • Humans
  • Molar

Substances

  • Dental Implants