High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase

Nucleic Acids Res. 2023 Oct 27;51(19):e99. doi: 10.1093/nar/gkad761.

Abstract

The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α-32P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • DNA-Directed RNA Polymerases / genetics
  • DNA-Directed RNA Polymerases / metabolism
  • Mycobacterium tuberculosis* / genetics
  • Mycobacterium tuberculosis* / metabolism
  • Oligonucleotides / metabolism
  • RNA / metabolism
  • Reproducibility of Results
  • Transcription Factors / metabolism
  • Transcription, Genetic*

Substances

  • DNA-Directed RNA Polymerases
  • Oligonucleotides
  • RNA
  • Transcription Factors