Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries

Chemosphere. 2023 Dec:343:140220. doi: 10.1016/j.chemosphere.2023.140220. Epub 2023 Sep 20.

Abstract

In the context of rampant growth of invasive plants, finding suitable ways for resource utilization has become the optimal choice for invasive plant management. In the field of energy storage, sodium-ion batteries have been limited by the lack of appropriate anode materials, and hard carbon stands out as the most promising candidate. Therefore, this study focuses on the preparation of biomass-derived carbons from three invasive plant species, namely Spartina alterniflora Loisel., Solidago canadensis L., and Erigeron canadensis L., through high-temperature carbonization. The resulting biomass carbons are then subjected to cleaning and activation processes to prepare sodium-ion anode materials. The internal structure of the materials was characterized using SEM, TEM, XRD, XPS, Raman spectroscopy, and BET. The materials exhibited a significant amount of pore structures, with interlayer spacing around 0.37 nm, which is larger than the original graphite interlayer spacing. The plant anode materials were assembled into full batteries for cyclic charge/discharge tests. The results show that all three anode materials have good multiplicative performance and excellent cyclable charge/discharge. After 100 cycles at a current of 50 mA in the voltage range of 0-3.0 V, the reversible capacities of the three materials reached 245.3, 207.19, and 227.12 mAh/g, respectively. Among them, the material derived from Spartina alterniflora maintained a capacity of 141.63 mAh/g even after 1000 cycles at a current of 200 mA, demonstrating the best capacity performance.

Keywords: Electrical properties; Hard carbon anode; Invasion alien plant; Sodium-ion batteries.