Strategic rationalization for improved photocatalytic decomposition of toxic pollutants: Immobilizing Bi2Te3 nanorods and V2O5 nanoparticles over MoS2 nanosheets

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Jan 5:304:123400. doi: 10.1016/j.saa.2023.123400. Epub 2023 Sep 12.

Abstract

Researchers have become increasingly interested in solar energy based on semiconductor photocatalysts to remove hazardous pollutants and clean the environment. In this work, an efficient MoS2-Bi2Te3-V2O5 nanocomposite has been prepared through wet impregnation method. MoS2-Bi2Te3-V2O5 photocatalyst was utilized to decompose the MB and Rh B dyes. The photocatalytic efficiency (Rh B) of MoS2-Bi2Te3-V2O5 nanocomposite (95.19 %) was higher than 2.70 times of Bi2Te3 nanorods, 1.55 times of V2O5 nanoparticles, 1.68 times of MoS2 nanosheets, 1.50 times of MoS2-Bi2Te3, and 1.21 times of MoS2-V2O5 nanocomposite, respectively. Recycling tests conducted on the MoS2-Bi2Te3-V2O5 nanocomposite revealed its high stability and durability. The outcomes obtained from the scavenger test suggest that the photogenerated hydroxyl radicals play a chief role in the photocatalytic performance of Rh B dye in the MoS2-Bi2Te3-V2O5 nanocomposite, respectively. The enhanced photocatalytic performance of the MoS2-Bi2Te3-V2O5 nanocomposite is ascribed to the strong hybrid formation of Bi2Te3, V2O5, and MoS2 nanosheets, respectively. Consequently, the straightforward and readily synthesized MoS2-Bi2Te3-V2O5 nanocomposite can serve as an economical, highly effective material for environmental applications.

Keywords: Hydroxyl radicals; MB dye; MoS(2)-Bi(2)Te(3)-V(2)O(5) nanocomposite; Rh B dye; Visible light.