Aging-Related Mitochondrial Dysfunction is Associated with Fibrosis in Benign Prostatic Hyperplasia

J Gerontol A Biol Sci Med Sci. 2023 Sep 20:glad222. doi: 10.1093/gerona/glad222. Online ahead of print.

Abstract

Background: Age is the greatest risk factor for lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). While LUTS/BPH can be managed with pharmacotherapy, treatment failure has been putatively attributed to numerous pathological features of BPH (e.g., prostatic fibrosis, inflammation). Mitochondrial dysfunction is a hallmark of aging, however its impact on the pathological features of BPH remains unknown.

Methods: Publicly available gene array data was analyzed. Immunohistochemistry examined mitochondrial proteins in human prostate. The effect of complex I inhibition (rotenone) on a prostatic cell line was examined using qPCR, immunocytochemistry, and Seahorse assays. Oleic acid was tested as a bypass of complex I inhibition. Aged mice were treated with OA to examine its effects on urinary dysfunction. Voiding was assessed longitudinally, and a critical complex I protein measured.

Results: Mitochondrial function and fibrosis genes were altered in BPH. Essential mitochondrial proteins (i.e., VDAC1/2, PINK1 and NDUFS3) were significantly (P<0.05) decreased in BPH. Complex I inhibition in cultured cells resulted in decreased respiration, altered NDUFS3 expression, increased collagen deposition and gene expression. Oleic acid ameliorated these effects. Oleic acid treated aged mice had significantly (P<0.05) improved voiding function and higher prostatic NDUFS3 expression.

Conclusion: Complex I dysfunction is a potential contributor to fibrosis and lower urinary tract dysfunction in aged mice. Oleic acid partially bypasses complex I inhibition and therefore should be further investigated as a mitochondrial modulator for treatment of LUTS/BPH. Hypotheses generated in this investigation offer a heretofore unexplored cellular target of interest for the management of LUTS/BPH.

Keywords: Lower urinary tract symptoms; complex I; oxidative phosphorylation; prostate; urology.