Exploiting the Synergism of a Carbon-Catalyst Interface to Achieve Magneto-Electrocatalytic Overall Water Splitting at 2.197 V

ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45855-45867. doi: 10.1021/acsami.3c08516. Epub 2023 Sep 22.

Abstract

The desire to electrolyze water at low energy and high kinetics for achieving rapid H2 production forms the holy grail for the paradigm shift to a sustainable H2-driven economy. While alkaline electrolysis is preferred due to the use of earth-abundant catalysts, its sluggish kinetics and high overpotential are the persistent challenges. Addressing this, we demonstrate the coupling of an externally applied magnetic field (Hext) to a synergistically designed interface of nanostructured carbon floret with antiferromagnetic NiO nanoflakes that act in unison to achieve rapid hydrogen generation (6.3 N m3 h-1 W-1) that is comparable with existing technologies. Specifically, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials are simultaneously reduced by 10 and 7%, respectively, under the influence of a weak fridge magnet (Hext = 200 mT). Consequently, ∼11% improvement in the energy efficiency is observed with a 21% reduced cell voltage for overall water splitting. The stability of the system is demonstrated over a prolonged lifetime of ∼95 h. This performance enhancement with Hext for both HER and OER is explained in terms of improved kinetic facility for the reaction and lower resistance of charge transfer pathway. Moreover, the electrocatalyst is seen to retain the improved performance for prolonged usage (∼3 h) even after the removal of the Hext, and hence, it provides an energy-efficient hydrogen and oxygen generation pathway.

Keywords: magneto-electrocatalysis; nano carbon floret; nickel oxide nanoparticles; overall water splitting; overpotential.