Sequential Laser-Burned Lignin and Hydrogen Evolution-Assisted Copper Electrodeposition to Manufacture Wearable Electronics

ACS Appl Mater Interfaces. 2023 Oct 4;15(39):46571-46578. doi: 10.1021/acsami.3c11814. Epub 2023 Sep 21.

Abstract

In the contemporary world, wearable electronics and smart textiles/fabrics are galvanizing a transformation of the health care, aerospace, military, and commercial industries. However, a major challenge that exists is the manufacture of electronic circuits directly on fabrics. In this work, we addressed the issue by developing a sequential manufacturing process. First, the target fabric was coated with a customized ink containing lignin. Next, a desired circuit layout was patterned by laser burning lignin, converting it to carbon and establishing a conductive template on the fabric. At last, using an in-house-designed printer, a devised localized hydrogen evolution-assisted (HEA) copper electroplating method was applied to metalize the surface of the laser-burned lignin pattern to achieve a very low resistive circuit layout (0.103 Ω for a 1 cm long interconnect). The nanostructure and material composition of the different layers were investigated via scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Monitoring the conductivity change before and after bending, rolling, stretching, washing, and adhesion tests presented remarkable mechanical stability due to the entanglement of the copper nanostructure to the fibers of the fabric. Furthermore, the HEA method was used to solder a light-emitting diode to a patterned circuit on the fabric by growing copper at the terminals, creating interconnects. The presented sequential printing method has the potential for fabricating reliable wearable electronics for various applications, particularly in medical monitoring.

Keywords: copper; electrodeposition; laser-burned; lignin; polyester velvet fabric; smart textiles; wearable electronics.