Molecular Self-Assembly in Conductive Covalent Networks for Selective Nitrate Electroreduction to Ammonia

J Am Chem Soc. 2023 Oct 4;145(39):21491-21501. doi: 10.1021/jacs.3c07320. Epub 2023 Sep 21.

Abstract

Electrochemical nitrate (NO3-) reduction in aqueous media provides a useful approach for ammonia (NH3) synthesis. While efforts are focused on developing catalysts, the local microenvironment surrounding the catalyst centers is of great importance for controlling electrocatalytic performance. Here, we demonstrate that a self-assembled molecular iron catalyst integrated in a free-standing conductive hydrogel is capable of selective production of NH3 from NO3- at efficiencies approaching unity. With the electrocatalytic hydrogel, the NH3 selectivity is consistently high under a range of negative biases, which results from the hydrophobicity increase of the polycarbazole-based electrode substrate. In mildly acidic media, proton reduction is suppressed by electro-dewetting of the hydrogel electrode, enhancing the selectivity of NO3- reduction. The electrocatalytic hydrogel is capable of continuous production of NH3 for at least 100 h with NH3 selectivity of ∼89 to 98% at high current densities. Our results highlight the role of constructing an internal hydrophobic surface for electrocatalysts in controlling selectivity in aqueous media.