Sandglass-Typed Single Chameleon Luminophore for Water Mapping Measurements: Intramolecular Energy Migrations in the Hydrophilic Tb(III)/Sm(III) Cluster

Inorg Chem. 2023 Oct 16;62(41):16794-16800. doi: 10.1021/acs.inorgchem.3c02219. Epub 2023 Sep 21.

Abstract

Novel hydrophilic and color-changeable single chameleon luminophores composed of Tb(III)/Sm(III) nona-nuclear clusters [TbxSm9-x(Sal-PEG-n)16(μ-OH)10]+(NO3)- (x = 1, 2, 3, and 9; Sal-PEG-n: salicylate polyethylene glycolmethylester, n = 2 and 4) are reported for water mapping measurements. Their characteristic sandglass structures and aggregates were analyzed using X-ray single crystal analysis and dynamic light scattering (DLS) measurements. The green- and yellow-luminescence of [Tb3Sm6(Sal-PEG-4)16(μ-OH)]+(NO3)- in water were observed at 20 and 50 °C, respectively. The ratio-metric luminescence analysis using green Tb(III) and orange Sm(III) emission bands is a promising candidate for exact temperature distribution measurements in fluid dynamics. The effective temperature-sensing property based on the competitive intramolecular energy transfer processes between Tb(III)-to-ligand and Tb(III)-to-Sm(III) in a non-a-nuclear cluster is explained using temperature-dependent kinetic analyses in the excited state.