Multivariable closed-loop control of deep brain stimulation for Parkinson's disease

J Neural Eng. 2023 Oct 4;20(5). doi: 10.1088/1741-2552/acfbfa.

Abstract

Objective. Closed-loop deep brain stimulation (DBS) methods for Parkinson's disease (PD) to-date modulate either stimulation amplitude or frequency to control a single biomarker. While good performance has been demonstrated for symptoms that are correlated with the chosen biomarker, suboptimal regulation can occur for uncorrelated symptoms or when the relationship between biomarker and symptom varies. Control of stimulation-induced side-effects is typically not considered.Approach.A multivariable control architecture is presented to selectively target suppression of either tremor or subthalamic nucleus beta band oscillations. DBS pulse amplitude and duration are modulated to maintain amplitude below a threshold and avoid stimulation of distal large diameter axons associated with stimulation-induced side effects. A supervisor selects between a bank of controllers which modulate DBS pulse amplitude to control rest tremor or beta activity depending on the level of muscle electromyographic (EMG) activity detected. A secondary controller limits pulse amplitude and modulates pulse duration to target smaller diameter axons lying close to the electrode. The control architecture was investigated in a computational model of the PD motor network which simulated the cortico-basal ganglia network, motoneuron pool, EMG and muscle force signals.Main results.Good control of both rest tremor and beta activity was observed with reduced power delivered when compared with conventional open loop stimulation, The supervisor avoided over- or under-stimulation which occurred when using a single controller tuned to one biomarker. When DBS amplitude was constrained, the secondary controller maintained the efficacy of stimulation by increasing pulse duration to compensate for reduced amplitude. Dual parameter control delivered effective control of the target biomarkers, with additional savings in the power delivered.Significance.Non-linear multivariable control can enable targeted suppression of motor symptoms for PD patients. Moreover, dual parameter control facilitates automatic regulation of the stimulation therapeutic dosage to prevent overstimulation, whilst providing additional power savings.

Keywords: Parkinson’s disease; adaptive; beta-band activity; closed-loop deep brain stimulation; computational model; proportional-integral controller; tremor-band activity.