Mechanism of symbiotic nodulation between nitrogen and peanut

Yi Chuan. 2023 Sep 20;45(9):801-812. doi: 10.16288/j.yczz.23-083.

Abstract

Nitrogen is critical for peanut growth and development, and symbiotic nodulation and nitrogen fixation is one of the main ways for peanut to obtain nitrogen. The influence of exogenous nitrogen on nodule nitrogen fixation involves complex regulatory mechanisms, revealing the regulatory mechanisms of nitrogen on nodule nitrogen fixation is of great significance for realizing the potential of biological nitrogen fixation. In this review, we summarize the mechanism of "Crack entry" in the formation of peanut root nodule, the mechanism of symbiotic nodulation and quantitative regulation of peanut, and the regulatory mechanism of nitrogen affecting peanut nodulation. At present, the molecular mechanism by which nitrogen affects the interaction between Bradyrhizobium and peanut, thereby regulating nodulation, is still unclear. Therefore, future research should focus on the signal exchange, nodule number regulation, and nutrient exchange mechanism of nitrogen effects on Bradyrhizobium and peanut, which would provide a theoretical basis for improving nodule nitrogen fixation efficiency and peanut yield, and reduce chemical nitrogen fertilizer application.

氮是花生生长发育所需的大量元素,共生结瘤固氮是花生获取氮素的主要方式之一。花生共生结瘤固氮涉及复杂的调控机理,揭示氮素对根瘤固氮的调控机制对发挥生物固氮潜力具有重要意义。本文系统总结了花生根瘤形成的“裂隙侵染”机制、花生共生结瘤和数量调控的机制以及氮素影响花生结瘤的调控机制。目前,氮素影响慢生根瘤菌与花生互作进而调控结瘤的分子机理尚不清楚,因此未来的研究重点应该集中在氮素影响花生慢生根瘤菌与花生的信号交流、根瘤数调节和营养交换机制等方面,为提高花生结瘤固氮效率和产量、减少化学氮肥施用提供理论基础。.

Keywords: nitrogen; nodulation; peanut; symbiotic nitrogen fixation.

Publication types

  • Review

MeSH terms

  • Arachis*
  • Nitrogen*

Substances

  • Nitrogen