Microalgal upgrading of the fermentative biohydrogen produced from Bacillus coagulans via non-pretreated plant biomass

Microb Cell Fact. 2023 Sep 20;22(1):190. doi: 10.1186/s12934-023-02193-0.

Abstract

Background: Hydrogen is a promising source of alternative energy. Fermentative production is more feasible because of its high hydrogen generation rate, simple operating conditions, and utilization of various organic wastes as substrates. The most significant constraint for biohydrogen production is supplying it at a low cost with fewer impurities.

Results: Leaf biomass of Calotropis procera was used as a feedstock for a dark fermentative production of hydrogen by Bacillus coagulans AH1 (MN923076). The optimum operation conditions for biohydrogen production were 5.0% substrate concentrationand pH 9.0, at 35 °C. In which the biohydrogen yield was 3.231 mmol H2/g dry biomass without any pretreatments of the biomass. A freshwater microalga Oscillatroia sp was used for upgrading of the produced biohydrogen. It sequestrated 97 and 99% % of CO2 from the gas mixture when it was cultivated in BG11 and BG11-N media, respectively After upgrading process, the residual microalgal cells exhibited 0.21mg/mL of biomass yield,high content of chlorophyll-a (4.8 µg/mL) and carotenoid (11.1 µg/mL). In addition to Oscillatroia sp residual biomass showed a lipid yield (7.5-8.7%) on the tested media.

Conclusion: Bacillus coagulans AH1 is a promising tool for biohydrogen production avoiding the drawbacks of biomass pretreatment. Oscillatroia sp is encouraged as a potent tool for upgrading and purification of biohydrogen. These findings led to the development of a multiproduct biorefinery with zero waste that is more economically sustainable.

Keywords: Bacillus; Biohydrogen; CO2 sequestration; Fermentation; Microalgae; Upgrading.

MeSH terms

  • Bacillus coagulans*
  • Biomass
  • Fermentation
  • Hydrogen
  • Microalgae*

Substances

  • Hydrogen