CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine

ACS Chem Biol. 2023 Oct 20;18(10):2128-2143. doi: 10.1021/acschembio.3c00310. Epub 2023 Sep 20.

Abstract

Cystic fibrosis (CF) is a lethal genetic disease caused by mutations in the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR). Class-II mutants of CFTR lack intermolecular interactions important for CFTR structural stability and lead to misfolding. Misfolded CFTR is detected by a diverse suite of proteostasis factors that preferentially bind and route mutant CFTR toward premature degradation, resulting in reduced plasma membrane CFTR levels and impaired chloride ion conductance associated with CF. CF treatment has been vastly improved over the past decade by the availability of small molecules called correctors. Correctors directly bind CFTR, stabilize its structure by conferring thermodynamically favorable interactions that compensate for mutations, and thereby lead to downstream folding fidelity. However, each of over 100 Class-II CF causing mutations causes unique structural defects and shows a unique response to drug treatment, described as theratype. Understanding CFTR structural defects, the proteostasis factors evaluating those defects, and the stabilizing effects of CFTR correctors will illuminate a path toward personalized medicine for CF. Here, we review recent advances in our understanding of CFTR folding, focusing on structure, corrector binding sites, the mechanisms of proteostasis factors that evaluate CFTR, and the implications for CF personalized medicine.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Cystic Fibrosis Transmembrane Conductance Regulator / chemistry
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Cystic Fibrosis* / drug therapy
  • Cystic Fibrosis* / genetics
  • Humans
  • Mutation
  • Precision Medicine
  • Proteostasis

Substances

  • Cystic Fibrosis Transmembrane Conductance Regulator
  • CFTR protein, human