Facile Synthesis of a SiOx-Graphite Composite toward Practically Accessible High-Energy-Density Lithium-Ion Battery Anodes

ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45938-45948. doi: 10.1021/acsami.3c11311. Epub 2023 Sep 20.

Abstract

SiOx-based material is a promising candidate for lithium-ion batteries (LIBs) owing to its high theoretical capacity. The inherent disadvantages of poor electronic conductivity and large volume variation can be solved by constructing the outermost carbon layer and reserving internal voids. However, the practical application of SiOx/C composites remains a great challenge due to the unsatisfactory energy density. Herein, we propose a facile synthetic approach for fabricating SNG/H-SiOx@C composites, which are constructed by amorphous carbon, hollow SiOx (H-SiOx), and spherical natural graphite (SNG). H-SiOx alleviates volume expansion, while amorphous carbon promotes Li+ migration and stable solid electrolyte interphase (SEI) formation. The as-prepared SNG/H-SiOx@C demonstrates a high reversible capacity (465 mAh g-1), excellent durability (93% capacity retention at 0.5C after 500 cycles), lower average delithiation potential than SNG (0.143 V after 500 cycles), and a 14% gravimetric energy density improvement at a loading level of 4.5 mg cm-2. Even at a compacted density of 1.5 g cm-3, the SNG/H-SiOx@C anode presents a modest volume deformation of 14.3% after 100 cycles at 0.1C.

Keywords: SiOx-graphite composite; hollow structures; lithium-ion battery anode; low deformation; low delithiation potential.