The value of time in the invigoration of human movements when interacting with a robotic exoskeleton

Sci Adv. 2023 Sep 22;9(38):eadh9533. doi: 10.1126/sciadv.adh9533. Epub 2023 Sep 20.

Abstract

Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby setting the vigor of volitional movements. Theoretical models predicted that the value of time should then amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts for upward and downward movements, respectively. Consistently, all participants expended substantial amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward, while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching movements for a wide range of efforts.

MeSH terms

  • Exoskeleton Device*
  • Humans
  • Movement