Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds

J Mater Chem B. 2023 Oct 18;11(40):9572-9596. doi: 10.1039/d3tb01236k.

Abstract

Bone defects frequently occur in clinical settings due to trauma, disease, tumors, and other causes. The clinical use of autologous bones and allograft bone, however, has several limitations, such as limited sources, donor site morbidity, and immunological rejection. Nevertheless, there is newfound hope for regenerating and repairing bone defects through the development and integration of bone tissue engineering scaffold and additive manufacturing (AM) technology, also known as 3D printing. In particular, vat photopolymerization (VPP)-AM of bioactive ceramic bone scaffolds has garnered significant interest from interdisciplinary researchers in recent years. On the one hand, VPP-AM demonstrates clear advantages in printing accuracy and speed compared to other AM and non-AM technologies. On the other hand, bioactive ceramic materials exhibit superior bioactivity, biodegradability, and mechanical properties compared to metals, polymers, and bioinert ceramics, making them one of the most promising biomaterials for developing bone scaffolds. This paper reviews the research progress of VPP-AM of bioactive ceramic bone scaffolds, covering the process principles of various VPP-AM technologies, the performance requirements and preparation process of VPP ceramic slurry, the VPP process of bioactive ceramic bone scaffolds, and the research progress on different material types of VPP bioactive ceramic scaffolds. Firstly, we provide a brief introduction to the process principles and medical applications of various VPP technologies. Secondly, we explore the composition of the VPP ceramic slurry system, discussing the function of various components and their effects on printing quality. Thirdly, we delve into the performance requirements of bone scaffolds and summarize the research progress of VPP bioactive ceramic bone scaffolds of various material types including hydroxyapatite (HA), tricalcium phosphate (TCP), bioglass (BG), etc.; Finally, we discuss the challenges currently faced by VPP-AM bioactive ceramic bone scaffolds and propose possible development directions for the future.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials*
  • Bone and Bones
  • Ceramics
  • Tissue Engineering
  • Tissue Scaffolds*

Substances

  • Biocompatible Materials