Genetic erosion within the Fabada dry bean market class revealed by high-throughput genotyping

Plant Genome. 2023 Dec;16(4):e20379. doi: 10.1002/tpg2.20379. Epub 2023 Sep 19.

Abstract

The Fabada market class within the dry beans has a well-differentiated seed phenotype with very large white seeds. This work investigated the genetic diversity maintained in the seed collections within this market class and possible genetic erosion over the last 30 years. A panel with 100 accessions was maintained in seed collections for 30 years, 57 accessions collected from farmers in 2021, six cultivars developed in SERIDA, and 16 reference cultivars were gathered and genotyped with 108,585 SNPs using the genotyping-by-sequencing method. Filtering based on genotypic and phenotypic data was carried out in a staggered way to investigate the genetic diversity among populations. The dendrogram generated from genotyping revealed 90 lines forming 16 groups with identical SNP profiles (redundant lines) from 159 lines classified as market-class Fabada according to their passport data. Seed phenotyping indicated that 19 lines were mistakenly classified as Fabada (homonymies), which was confirmed in the dendrogram built without redundant lines. Moreover, this study provides evidence of genetic erosion between the population preserved for 30 years and the currently cultivated population. The conserved population contains 54.6% segregation sites and 41 different SNP profiles, whereas the cultivated population has 19.6% segregation sites and 26 SNP profiles. The loss of genetic variability cannot be attributed to the diffusion of modern cultivars, which increase genetic diversity (six new SNP profiles). The results allow for the more efficient preservation of plant genetic resources in genebanks, minimizing redundant accessions and incorporating new variations based on genotypic and phenotypic data.

MeSH terms

  • Fabaceae*
  • Genotype
  • Phenotype
  • Polymorphism, Single Nucleotide