Adsorption of sulfur-containing contaminant gases by pristine, Cr and Mo doped NbS2monolayers based on density functional theory

Nanotechnology. 2023 Oct 6;34(50). doi: 10.1088/1361-6528/acfb13.

Abstract

The adsorption and sensor performance of hazardous gases containing sulfur (SO2, H2S and SO3) on pristine, Cr and Mo doped NbS2monolayers (Cr-NbS2and Mo-NbS2) were investigated in detail based on density functional theory. The comparative analysis of the parameters such as density of states, adsorption energy, charge transfer, recovery time and work function of the systems showed that the pristine NbS2monolayer have poor sensor performance for sulfur-containing hazardous gases due to weak adsorption capacity, insignificant charge transfer and insignificant changes in electronic properties after gas adsorption on the surface. After doping with Cr atoms, the adsorption performance of Cr-NbS2was significantly improved, and it can be used as a sensor for SO2and H2S gases and as an adsorbent for SO3gas. The adsorption performance of Mo-NbS2is also significantly improved by doping with Mo atoms, and it can be used as a sensor for H2S gas and as an adsorbent for SO2and SO3gas. Therefore, Cr-NbS2and Mo-NbS2are revealed to be sensing or elimination materials for the harmful gases containing sulfur (SO2, H2S and SO3) in the atmosphere.

Keywords: NbS2; adsorbent; adsorption; density functional theory; gas sensor; metal doping.