Two-Dimensional Silver-Chalcogenolate-Based Cluster-Assembled Material: A p-type Semiconductor

Nano Lett. 2023 Oct 11;23(19):8923-8931. doi: 10.1021/acs.nanolett.3c02269. Epub 2023 Sep 19.

Abstract

We have synthesized and characterized a new two-dimensional honeycomb architecture resembling a single-layer of atomically precise silver cluster-assembled material (CAM), [Ag12(StBu)6(CF3COO)6(4,4'-azopyridine)3] (Ag12-azo-bpy). The interlayer noncovalent van der Waals interactions within the single-crystals were successfully disrupted, leading to the creation of this unique structure. The optimized Ag12-azo-bpy CAM demonstrates a valence band that is localized on the Ag12 cluster node situated near the Fermi energy level. This localization induces electron injection from the linker to the cluster node, facilitating efficient charge transportation along the plane. Exploiting this single-layer structure as a distinctive platform for p-type channel material, it was employed in a field-effect transistor configuration. Remarkably, the transistor exhibits a high hole mobility of 1.215 cm2 V-1 s-1 and an impressive ON/OFF current ratio of ∼4500 at room-temperature.

Keywords: 2D Single Layer; Cluster-Assembled Material; Field Effect; Nanocluster; Silver.