Hydrocarbon Degradation by Contact with Anoxic Water Microdroplets

J Am Chem Soc. 2023 Oct 4;145(39):21538-21545. doi: 10.1021/jacs.3c07445. Epub 2023 Sep 19.

Abstract

Oils are hydrophobic, but their degradation is frequently found to be accelerated in the presence of water microdroplets. The direct chemical consequences of water-oil contact have long been overlooked. We show that aqueous microdroplets in emulsified water-hexadecane (C16H34) mixtures can spontaneously produce CO2, •H, H2, and short-chain hydrocarbons (mainly C1 and C2) as detected by gas chromatography, electron paramagnetic resonance spectroscopy, and mass spectrometry. This reaction results from contact electrification at the water-oil microdroplet interface, in which reactive oxygen species are produced, such as hydrated hydroxyl radicals and hydrogen peroxide. We also find that the H2 originates from the water microdroplet and not the hydrocarbon it contacts. These observations highlight the potential of interfacial contact electrification to produce new chemistry.