Possible Role of Oxidative Stress and Nrf2/HO-1 Pathway in Pentylenetetrazole-induced Epilepsy in Aged Rats

Rep Biochem Mol Biol. 2023 Apr;12(1):147-158. doi: 10.52547/rbmb.12.1.147.

Abstract

Background: To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response.

Methods: Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues.

Results: Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01).

Conclusion: Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.

Keywords: Aging; Epilepsy; HO-1; Nrf2; Oxidative stress; Pentylenetetrazole (PTZ).