Pendular mechanism determinants and elastic energy usage during walking of obese and non-obese children

Exp Physiol. 2023 Nov;108(11):1400-1408. doi: 10.1113/EP091408. Epub 2023 Sep 18.

Abstract

The mechanical and metabolic responses of walking by obese children are not yet well understood. The objectives of this study were (1) to compare the pendular mechanism (recovery, phase shift by α and β values, and ratio between forward and vertical mechanical work), the maximum possible elastic energy usage and the bilateral coordination during walking between non-obese and obese children, and (2) to verify if the bilateral coordination could contribute to understanding the pendular mechanism and elastic energy usage in these populations. Nine obese (six female, 8.7 ± 0.5 years, 1.38 ± 0.04 m, 44.4 ± 6.3 kg and 24.1 ± 3.50 kg/m2 ) and eight non-obese (four female, 7.4 ± 0.5 years, 1.31 ± 0.08 m, 26.6 ± 2.1 kg and 16.4 ± 1.40 kg/m2 ) children were analysed during walking on a treadmill at five speeds: 1, 2, 3, 4 and 5 km/h. The results indicated that although the mechanical energy response of the centre of mass during walking is similar between obese and non-obese children, the obese children showed a lower pendulum-like mechanism and greater elastic energy usage during level walking. Therefore, obese children seem to use more elastic energy during walking compared to non-obese children, which may be related to their apparent higher positive work production during the double support phase. Finally, bilateral coordination presented high values at slow speeds in both groups and requires further attention due to its association with falls. NEW FINDINGS: What is the central question of this study? Are there any differences of the pendular and elastic mechanisms and bilateral coordination during walking between non-obese and obese children? What is the main finding and its importance? To our knowledge, this study is the first to analyse the mechanical energy usage and the bilateral coordination of obese and non-obese children during walking. Obese children had a lower pendular recovery mechanism and used more elastic energy compared to non-obese children. The bilateral coordination was higher at slow speeds in both groups and requires further attention due to its association with falls.

Keywords: biomechanics; energy; gait; locomotion; obesity; recovery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Child
  • Energy Metabolism / physiology
  • Exercise Test
  • Female
  • Gait* / physiology
  • Humans
  • Male
  • Pediatric Obesity*
  • Walking / physiology