Hyperbolic Polaritons in Topological Nodal Ring Semimetals

Phys Rev Lett. 2023 Sep 1;131(9):096902. doi: 10.1103/PhysRevLett.131.096902.

Abstract

In mirror-symmetric systems, there is a possibility of the realization of extended gapless electronic states characterized as nodal lines or rings. Strain induced modifications to these states lead to the emergence of different classes of nodal rings with qualitatively different physical properties. Here we study optical response and the electromagnetic wave propagation in type I nodal ring semimetals, in which the low-energy quasiparticle dispersion is parabolic in momentum k_{x} and k_{y} and is linear in k_{z}. This leads to a highly anisotropic dielectric permittivity tensor in which the optical response is plasmonic in one spatial direction and dielectric in the other two directions. The resulting normal modes (polaritons) in the bulk material become hyperbolic over a broad frequency range, which is furthermore tunable by the doping level. The propagation, reflection, and polarization properties of the hyperbolic polaritons not only provide valuable information about the electronic structure of these fascinating materials in the most interesting region near the nodal rings but also pave the way to tunable hyperbolic materials with applications ranging from anomalous refraction and waveguiding to perfect absorption in ultrathin subwavelength films.