Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy

Neural Regen Res. 2024 Mar;19(3):680-686. doi: 10.4103/1673-5374.380908.

Abstract

Neurotrophic keratopathy is a persistent defect of the corneal epithelium, with or without stromal ulceration, due to corneal nerve deficiency caused by a variety of etiologies. The treatment options for neurotrophic keratopathy are limited. In this study, an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor (CTH-mNGF). Its effectiveness was evaluated in corneal denervation (CD) mice and patients with neurotrophic keratopathy. In the preclinical setting, CTH-mNGF was assessed in a murine corneal denervation model. CTH-mNGF was transparent, thermosensitive, and ensured sustained release of mNGF for over 20 hours on the ocular surface, maintaining the local mNGF concentration around 1300 pg/mL in vivo. Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice. A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy. Patients received topical CTH-mNGF twice daily for 8 weeks. Fluorescein sodium images, Schirmer's test, intraocular pressure, Cochet-Bonnet corneal perception test, and best corrected visual acuity were evaluated. In total, six patients (total of seven eyes) diagnosed with neurotrophic keratopathy were enrolled. After 8 weeks of CTH-mNGF treatment, all participants showed a decreased area of corneal epithelial defect, as stained by fluorescence. Overall, six out of seven eyes had fluorescence staining scores < 5. Moreover, best corrected visual acuity, intraocular pressure, Schirmer's test and Cochet-Bonnet corneal perception test results showed no significant improvement. An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes. This study demonstrates that CTH-mNGF is transparent, thermosensitive, and has sustained-release properties. Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy, being convenient and cost effective.

Keywords: chitosan; corneal reinnervation; murine nerve growth factor; neurotrophic keratopathy; thermosensitive hydrogel.