Iron Oxide Nanoparticles in a Dynamic Flux: Magnetic Hyperthermia Effect on Flowing Heavy Crude Oil

ACS Omega. 2023 Aug 28;8(36):32520-32525. doi: 10.1021/acsomega.3c02832. eCollection 2023 Sep 12.

Abstract

An essential part for crude oil extraction is flow assurance, being critical to maintain a financially sustainable flow while getting the petroleum to the surface. When not well managed, it can develop into a significant issue for the O&G industry. By heating the fluids, problems with flow assurance, including paraffin deposition, asphaltene, and methane hydrate, can be reduced. Also, as the temperature rises, a liquid's viscosity decreases. Research focusing on the application of magnetic nanoparticles (NPs) in the oil industry is very recent. When magnetic nanofluids are exposed to an alternating magnetic field, the viscosity decreases by several orders of magnitude as a result of the fluid's temperature rising due to a phenomenon known as magnetic hyperthermia. This work focuses on the use of magnetic NPs (9 nm) in heavy crude oil (API 19.0). The frequency and strength of the magnetic field, as well as the characteristics of the fluid and the NPs intrinsic properties all affect the heating efficiency. For all of the experimental settings in this work, the flowloop's temperature increased, reaching a maximum of ΔT = 16.3 °C, using 1% wt NPs at the maximum available frequency of the equipment (533 kHz) and the highest field intensity for this frequency (14 kA/m), with a flow rate of 1.2 g/s. This increase in temperature causes a decrease of nearly 45% on the heavy crude oil viscosity, and if properly implemented, could substantially increase oil flow in the field during production.