Downregulation of MicroRNA-29-3p Following Percutaneous Coronary Intervention: An Implication of YY1/IRAK1 Pathway in the Post-Vascular Injury Inflammation

Acta Cardiol Sin. 2023 Sep;39(5):742-754. doi: 10.6515/ACS.202309_39(5).20230215A.

Abstract

This study explored the expression of microRNA (miR)-29b-3p following percutaneous coronary intervention (PCI) and the implication of its downstream Yin Yang 1 (YY1)/interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) pathway in post-vascular injury inflammation. Blood samples were collected for analysis of plasma miR-29b-3p from patients with acute coronary syndrome before surgery, 1 day after PCI, and 30 days after PCI. Lipopolysaccharide (LPS)-treated human coronary artery endothelial cells (HCAECs) were transfected with miR-29b-3p mimic/inhibitor or YY1 shRNA and underwent viability tests. Enzyme-linked immunosorbent assay was performed to detect the levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), IL-1β, IL-6, and tumor necrosis factor (TNF)-α in serum and cell culture supernatant. Dual-luciferase reporter and RNA/chromatin immunoprecipitation were used to confirm the targeting relationships among miR-29b-3p, YY1, and IRAK1. A rat model of intraluminal injury of the common femoral artery was established to address the role of miR-29b-3p and relevant mechanisms. miR-29b-3p was lowly expressed, and sVCAM-1, IL-1β, IL-6, and TNF-α were upregulated 1 day after PCI and 24 h after LPS treatment. miR-29b-3p overexpression or YY1 knockdown alleviated LPS-induced inflammatory responses and improved the viability of HCAECs. miR-29b-3p inhibition aggravated LPS-induced inflammatory injury in HCAECs. miR-29b-3p bound to YY1 mRNA and inhibited the expression of YY1 protein. YY1 bound to the IRAK1 promoter and activated the transcription of IRAK1. Upregulation of miR-29b-3p suppressed the inflammatory response after intraluminal injury of the common femoral artery in rats. In conclusion, dysregulation of the YY1/IRAK1 pathway via miR-29b-3p downregulation may be implicated in post-vascular injury inflammation.

Keywords: IRAK1; Inflammation; Percutaneous coronary intervention; YY1; miR-29b-3p.